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General Comments: 
 
A review of methods that assess annual population growth rates was recognized as 
necessary by the federal consultative parties for the 2000 Biological Opinion (BO) for the 
Federal Columbia River Power System (FCRPS).  The need for such a review was, in a 
sense, confirmed through the recent judicial remand of the same BO.  In both forums, the 
NorthWest Fisheries Science Center (NWFSC) was requested to “review related methods 
of characterizing population trends, especially those that had been suggested as 
alternatives to ‘lambda’ estimation” in comments on both the BO and the litigation. The 
white paper purports to conduct such a review and does indeed discuss methods for 
estimating population trends and extinction risks.  It summarizes recent work published 
by Holmes and others in the peer-reviewed scientific literature. What it does not do, 
however, is discuss alternatives to lambda estimations.  Instead, it establishes the 
credentials of the extensive work done over the last three years to validate the diffusion 
approximation model for salmonid population data.  
 
Extinction risk is evaluated based on current estimates of population size, trend, and 
variability. The 2000 Biological Opinion jeopardy analysis focused on probability of 
extinction and probability of recovery as the critical metrics, not lambda per se. The 
reviewers should comment in detail on the strengths and weaknesses of using 100-year 
extinction probability in the jeopardy analysis as opposed to a more reliable, but data 
quality or assumption dependent, measure such as lambda.  They could also evaluate the 
accuracy of their favored population viability analyses in predicting the status of wild 
populations 100 years into the future. Holmes (2001) argues for using lambda as a risk 
measure because reliance on a risk metric with recalcitrant estimation problems 
(extinction risk) is hard to justify when an equally useful and more reliable measure is 
available.  
 
Coulson et al. (2001) pointed out the many pitfalls in population viability analysis. They 
argue that “population viability analyses can only be accurate at predicting extinction 
probabilities if data are extensive and reliable, and if distribution of vital rates between 
individuals and years can be assumed to be stationary in the future, or if any changes can 
be accurately predicted.” Salmon populations are known to undergo large nonstationary 
changes in vital rates due to ocean/climate regime shifts and changes in harvest rates. 
These are not well treated in the current CRI analysis because it assumes a stationary 
process. 
 



Extinction, under the population viability analysis model, can only come about as the 
result of long-term, gradual declines (e.g., birth rate < replacement rate over many years, 
as in Italy or Germany).  In fact, it appears that most extinctions are the result of 
catastrophes that are not well-predicted by Population Viability Analysis methods.  For 
salmon stocks in question, the only recent (past several decades years), well-documented 
extinctions have occurred due to stocks’ exclusion from large spawning areas (upper 
Clearwater, above Grand Coulee and above Hells Canyon), and from deliberate 
poisoning with rotenone (of sockeye in Idaho lakes).  None of these would have been 
predicted by Population Viability Analysis methods alone. 
 
A possible conclusion to be drawn: either do not try to predict extinction, or place very 
large caveats around any such predictions.  
  
Proposal: 
 
Later in these comments, we offer some suggestions for strengthening and/or modifying 
the basic approach now used, as well as make a few suggestions of new techniques.  In 
the meantime, we would like to propose a more thorough review be performed in 
response to the present circumstances of a judicially remanded Biological Opinion.. 
 
A thorough review of methods should include establishing a set of criteria against which 
the assessment of alternative methods can be objectively evaluated.  These criteria were 
not provided.  The author’s and other assessment methods were evaluated in the paper 
using limited criteria applied inconsistently.   An objective review of methods may best 
be conducted by an independent party, but could also be accomplished through the use of 
a small team of qualified individuals sharing only a desire for progress.  NOAA 
management could also provide more guidance on the purpose and characteristics of the 
issues and decisions to which scientific methods need to be applied.  Such detail could 
focus efforts toward method selection and development. 
  
The criteria for evaluating alternative population assessment methods must explore more 
than the scientific qualities of a method.  Other factors such as cost, timeliness, and 
suitability to the decisions at hand are also important. BPA, of course, has done 
considerable thinking along these lines, and in a paper entitled, “ESA Listings, Jeopardy 
Standards, Performance Measurement, and the FCRPS (12/22/03),” suggests  the 
following criteria.:  
 
“In considering alternative standards and analytical methods to support listing and 
consultation decisions, options should be evaluated against criteria to ensure Federal 
agencies are able to select the most suitable.  
 

1. Timeliness - the method(s) and associated data requirements must be available 
in a timeframe consistent with the decisions that must be made.  These 
decisions include listings, consultations, and annual performance-based 
management decisions on allocation of fiscal and operational resources to 
achieve needed biological results. 



2. “reasonable information standard” - NOAA and USFWS Section 7 regulations 
require the “…best available data…” to support ESA assessments and 
decisions, “…regardless of the sufficiency of that data…”  Federal agencies 
are required to do “all that is practicable” to develop information for the 
consultation.  New information needs can be rejected provided such rejection 
is not arbitrary and capricious.   

3. Cost-effectiveness - Data collection and analytical methods must be cost-
effective relative to alternative assessment techniques.  Need to consider the 
annual and long-term costs for collecting the data needed to support the 
methods.  No use adopting complex and expensive methods if the region is 
ultimately unwilling to pay for it.   

4. Reasonable and prudent – costs for data and assessment methods should be 
reasonable relative to the fiscal resources available for overall F&W Program 
administration, M&E, research of critical uncertainties, and investing in actual 
ESU recovery.  Opportunity costs of alternative assessment methods must be 
considered.  

5. Scientifically Valid - methods must be scientifically valid.  Assumptions and 
uncertainties should be clearly presented.  

6. Value-added – Alternative methods and supporting data requirements should 
be evaluated based on what additional value they add to the management 
decisions that need to be made compared to simpler, more cost-effective 
methods.  Do more complex methods add sufficient value to the actual 
decisions to justify higher costs? 

7. Clarity - methods and analyses must be understandable to Federal decision 
makers, fishery biologists, elected officials, and key constituent groups. 

8. Currency – analytical methods must be capable of incorporating the most 
recent years’ data in a timely manner. 

9. Parity – analytical methods should only require sufficient precision for the 
questions that need to be answered, decisions that need to be made (and have 
been made), and the standards that have been, or will be, established.  For 
example, there is no need to incur high costs for analytical methods that 
produce precise answers for application to imprecise standards.   

10. Consistency in application – Standards and assessment methods should be 
consistent and applicable across all arenas of consultation, within and between 
the 4 H’s.  For example, including requirements on the FCRPS to ensure 
viability of an ESU’s individual populations should also be then be a 
requirement for harvest consultations.” 

 
We suggest a matrix that compares methods against criteria to ensure complete and 
objective consideration.  We also suggest that some preparation time be devoted to the 
development of a “common currency” to ensure consistent and equitable treatment of 
uncertainties and residuals among the techniques.  
 
 
 
 



 
 
 
Application of Methods to Decisions: 
 
Given the dynamic variability of salmon abundance and survival, the variability of 
available data, their relatively short life cycles, the plasticity of their responses to 
environmental cues, and abundant adaptive behavior, we can expect substantial 
uncertainty in the results that Holmes’ method, or any other methods may provide.  It 
appears, however, that, even in the face of all that uncertainty, we persist in pursuing a 
‘secure’ analytical method that can instruct a one-time, long-term answer to a set of 
short-term questions.  
  
ESA decision-making is a series or chain of decisions incorporating the latest information 
and methodological developments.  These decisions are not long lived.  Consequently, 
analytical methods to instruct such decisions should best account for this updating and 
adjusting to new information on cause-and-effect and population status.  Such frequent 
reviews of information also lead to changes in mitigation actions taken to avoid jeopardy 
and extinction, and hasten recovery.  The current, long-term predictions of extinction risk 
are, therefore, not only highly uncertain and of questionable use for our predominantly 
short term decision processes but inherently invalid given the adaptive management built 
into the ESA decision processes.  Over 25, 50, and 100-year periods, a multitude of 
changes will be made to the habitat and viability of each ESU, and to our basic 
understanding of the factors that affect an ESU.  No method can capture these changes 
and completely predict the outcomes, although we may gain confidence in our decision 
making, given a better adapted tool. 
 
Measurement Errors: 
 
The Dennis-Holmes method differs from the Dennis method in that it assumes that some 
variation in abundance is due to measurement error rather than process error.  Clearly, 
measurement error may be problematic.  However, the examples cited (Dunham & 
Reiman 2000, Jones et al 1998, Hilborn et al 1999) are of very limited relevance for the 
stocks in question.  The first deals with bull trout, a smaller, non-anadromous species 
which builds redds that are much smaller than those of chinook, steelhead, and coho.  The 
other two address problems with live, transect-style counts (rather than redd or dam 
counts) of pink salmon spawning aggregates, a physically smaller and far more abundant 
species than listed salmon and steelhead.  The Holmes November 2003 review (p. 9) 
notes that “[t] he models also include sampling error in the range of that observed for 
redd-count data (standard error 0.3 to 0.85)”, but we can find no cite to sources for these 
estimates (they do notappear to be in Achord et al 2003).   
 
Conclusion: if examples of measurement error can indeed be found for listed stocks, or at 
least for the same species of salmonids, it would be very useful to see these in detail in 
the Diffusion Approximation (DA) methods review.  If not, appropriate disclaimers 



should be attached to the analyses, to the effect that while measurement error is assumed 
in the Dennis-Holmes method, we have no empirical estimates of it for the listed species. 
 
 
 
 
 
Stationarity 
 
A substantial and growing body of literature strongly suggests that cycles in salmonid 
survival – most likely due to climate effects - are the norm rather than the exception.  
Furthermore, these climate changes are typically considered to be large, step-function 
shifts, as opposed to simple autoregressive processes.  If this were also the case for listed 
stocked, this would obviously violate the stationarity assumption of DA methods.   
 
A closely related body of research suggests that one can expect that salmon stocks of the 
same species, rearing in close proximity, to exhibit strong correlations in abundance, 
recruits per spawner (R/S), and life-stage survival rates.  These correlations are of 
technical interest because they enable one to use information from large collections of 
stocks to estimate model parameters.  They are also of interest from a management 
perspective as well; since they strongly imply that the assumption of stock independence 
made in DA’s to date do not hold in practice.  Taken together, these would suggest that 
the failure to discover these relationships with DA methods (e.g., Holmes, “Review of 
methods …”, Figure 7) is limitations of the DA method, and not indications that regime 
shifts and correlations among stocks do not exist.   
 
Nearly all of these publications either compare multiple stocks with similar spawning 
locations (e.g., Snake River spring/summer chinook) or aggregates (e.g., all spring 
chinook spawning above Bonneville Dam), rather than the stock-by-stock approach taken 
for the majority of DA analyses.  In addition, no other analysis that we are aware of that 
looked for climate effects or multi-stock correlations grouped different species and 
assumed similar responses to climate, as is the case in Figure 7 (steelhead and chinook).  
See next two sections for more details and conclusions. 
 
Climate effects 
 
A growing body of literature shows that sharp, step-wise changes in climate are common 
wherever long-term series of climate indices are available (e.g., Ware, 1995, Beamish et 
al 1999, Hare and Francis 1994, Downton and Miller 1998). The references merely 
scratch the surface of a rapidly growing field of study. 
 
A number of recent publications strongly suggest that climate-induced changes in 
survival rates, R/S, and/or harvest follow step functions.  These include Adkinson et al 
1996 (BC sockeye R/S), Beamish et al 1999 (BC coho catch), Bradford and Irvine (BC 
coho R/S), Downton and Miller 1998 (sockeye, pink, and chum catch), Koslow et al 2002 
(coho marine survival), Mantua et al 1997 (catch, various spp.), Mueter et al 2002 



(Oncorhynchus spp. R/S), and Ware and Thompson 1991 (sardine and other spp. catch).  
All of these publications use either multi-stock R/S approaches (e.g., Adkinson et al 
1996, Mueter et al 2002) or use catch aggregated across multiple stocks.  We are not 
aware that anyone to date has detected climate step-function effects in single stocks – the 
data are simply too noisy to permit such analyses. 
 
However, where data permit it (long time series and R/S having much higher power than 
short abundance time series), the above discussion suggests we do systematic checks for 
step functions.  Especially for longer time series, harvest estimates should be used to 
adjust spawning abundance, since rates were much higher pre-1980, the cut-off for most 
time series in the BiOp.  Power and sensitivity analyses for the DA approach would also 
be useful, to see if climate effects are detectable and evaluate the sensitivity of the DA 
approach. 
 
Additional Suggestions for Improvements: Multi-stock approaches: 
 
Fortunately, there are many techniques available to model correlations or covariance in  
stock-specific spawner abundance, R/S, and life-stage survival rates.  Botsford and 
Paulsen (2000) reviews methods for cross-stock correlations on abundance and R/S, and 
apply these to a number of Columbia basin spring/summer chinook stocks.  Paulsen and 
Hinrichsen (2002) apply R/S regression methods to Snake River spring/summer chinook.  
Peterman et al (2000) apply Kalman filters to Pacific salmon, while Pyper et al (2002) 
apply regression methods to chum salmon, and Pyper et al (2001) apply similar methods 
to pink salmon. Paulsen and Fisher (2001) and Paulsen and Fisher (2003) use regression 
models applied to multi-stock estimates of juvenile survival.  All R/S methods and 
Paulsen and Fisher (2003) find density-dependent effects in the vast majority of stocks, as 
well as strong covariation in indicators (abundance, R/S, or survival). 
 
Note that only Botsford and Paulsen (2000) use abundance in their analyses.  This 
suggests that information on age-at-return (for R/S) or life-stage survival rates will be 
needed for multi-stock modeling, although a recent suggestion used Kalman filters to 
smooth abundance data to good effect. 
 
Conclusion: multi-stock approaches have done very well at detecting effects that are too 
subtle for single-stock approaches.  Where data permit, different analyses using 
abundance, R/S, and other metrics over time is recommended to compare stocks and 
investigate common effects due to climate, hydropower, etc. 
 
Strengthening lambda estimation 
 
The current approach to estimating and characterizing the uncertainty in lambda is to 
provide separate estimates of stochastic growth rate and sigma^2.  Stochastic growth rate 
is estimated using a running sum approach that uses the same amount of smoothing on 
each of the data sets to which it is applied. The sigma^2 estimate is calculated using the 
slope method of Holmes. This approach yields confidence intervals based on a t-
distribution with degrees of freedom equal to  



 
 d.f. = .333 + 0.212*n - 0.387L (for n > 15) 
 
where n is the length of the time series and L is the number of counts summed to 
calculate the running sum (currently 4) (Holmes and Fagan 2002).  In the normal i.i.d. 
case, the degrees of freedom are usually (d.f. = n-1), so it is clear that the current 
approach presents inefficient estimate of stochastic growth rate in order to reduce the 
effects of bias. Based on the formula above, in order for the CRI estimates to achieve 20 
d.f., 100 spawner observations are needed. In order to achieve just 10 d.f., 53 spawner 
observations are needed. Using the 22 spawner observations over 1980-2001, which is 
the current time period for estimating stochastic growth rate, gives us just 4 d.f., which is 
quite poor. At 4 d.f., the variance of the t distribution is twice as large as it is for 21 d.f. 
Thus the slope-based method comes at a price: a dramatic loss of precision. 
 
To regain some accuracy in stochastic growth rate while also accounting for 
measurement error, we would recommend the following: 
(1) Combine several populations from an ESU to make inferences about stochastic 
growth rate. Model selection criteria may support using a single stochastic growth rate for 
several populations. 
(2) Do not treat the populations in (1) as independent. Model the covariability so 
precision estimate is not inflated. 
(3) Choose a method that allows the level of smoothing of the spawner series to change 
with the estimate of measurement error. High measurement error should increase 
smoothing which low measurement error should reduce smoothing. As it stand the CRI 
method uses a high level of smoothing (4 year running sum) for all series. 
(4) Check to see if common variances are supported by the data. 
(5) Allow for the possibility of stochastic growth rate changing due to different harvest or 
ocean/climate regime shifts. The current models may be misinterpreting dramatic shifts in 
vitality rates as part of a noise process rather than nonstationarity. 
 
Kalman filter 
 
The Kalman filter approach presented at the 5 December Llambda workshop can 
incorporate these suggestions naturally. Lindley (2003) recently applied the Kalman filter 
approach to model a single salmon population. More generally, a Kalman filter approach 
applied to multiple stocks is 
 

Qtttt =ηη+µ+α=α − )var(,1 (state equation) 
  

Hy tttt +εε+α= )var(,  (measurement equation) 
 
where  tα   is a 1×m  vector of states,  µ  is a 1×m  vector of population-specific or 
common stochastic growth rates, tη is a multivariate normal noise process with mean 0 
and mm× variance matrix Q , ty  is a 1×m  vector of log(spawner) observations, tε  is a 
multivariate normal error term with mean zero and mm× variance matrix H . 



 
Smoothing. It may be shown that the stock-specific stochastic growth rate estimates are 
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where T is the number of yearly observations, and Tta | is the smoothed estimate of the 
state at time t. It is defined as  
 

),,,|( 21| TtTt yyyEa Kα=  
 
When measurement error in the data increases, the state estimate is based on greater 
smoothing of the observations. When measurement error is low, the state estimates track 
the observations closely. Thus, unlike the running sum approach, the level of smoothing 
used to estimate the stochastic growth rate depends on the measurement error estimate 
(Figure 1). 
 

Valley
Meas. error =1.02 

0

1

2

3

4

5

6

1980 1985 1990 1995 2000 2005

Year

lo
g(

sp
aw

ne
rs

)

log(spawners)
KF smoother
log(4-year running average)

Bear Valley
Meas. error =0.054 

0
1
2
3
4
5
6
7
8

1980 1985 1990 1995 2000 2005

Year

lo
g(

sp
aw

ne
rs

)

log(spawners)
KF smoother
log(4-year running average)

 
Figure 1. The level of smoothing used by the Kalman filter is greater when measurement 
error is larger as demonstrated in the above graphs.  
 
 
Common stochastic growth rate. It is possible to estimate a common stochastic growth 
rate for the model described above so that all populations have the same stochastic 
growth rate parameter. This is accomplished by specifying a single parameter in the µ 
vector. We can then use the likelihood function to calculate AIC and see if the model 
with a common stochastic growth rate is better supported than the model with stock-
specific stochastic growth rates. Preliminary results show that spring/summer chinook 
index stocks in the Snake River can be combined to increase the accuracy of stochastic 
growth rate (Table 1). 
 



 
Table 1. Stochastic growth rate estimates. The model with common 
stochastic growth rate gives a more precise estimate as indicated by 
relatively low value of SE (see bolded value). Furthermore, the 
common stochastic growth rate model has lower AIC. The stock-
specific stochastic growth rate model has AIC of 416 while the 
common stochastic growth rate model has AIC of 407. 
Stock stochastic 

growth 
rate 

SE Mean Bias* 

Bear Valley and Elk Creek 0.15 0.25 -0.03 
Marsh Creek 0.12 0.38 -0.03 
Sulphur Creek 0.12 0.42 -0.03 
Big Creek 0.12 0.27 -0.02 
Lemhi River 0.10 0.19 -0.01 
upper Valley Creek 0.11 0.18 -0.03 
All (common stochastic growth rate 
model) 

0.19 0.08 -0.04 

*Mean bias as fraction of SE.  
 
Process error variance bias. The Kalman process error variances tend to be biased 
downwards, but not to the degree described by Holmes (2003; Figure 3) in the paper 
"Beyond theory to application and evaluation: diffusion approximations for population 
viability analysis."  Holmes has indicated that the log (process error variances) are not 
biased in mean, but are highly biased in median. Our analysis shows that the median bias 
is actually smaller than the mean bias, but that bias is consistently downward. Some bias 
correction procedure appears to be needed. The largest mean bias was seen in the Lemhi 
River population which had log (process error variance) that was 50% of standard error 
(SE).  
 
Table 2. Log(process error variance) estimates from Kalman filter assuming stock-
specific stochastic growth rates.  
Stock Log(var estimate) SE Mean bias* Median bias* 
Bear Valley and Elk Creek 0.25 0.35 -0.28 -0.25 
Marsh Creek 1.07 0.35 -0.28 -0.21 
Sulphur Creek 1.28 0.43 -0.30 -0.22 
Big Creek 0.37 0.41 -0.27 -0.19 
Lemhi River -0.29 0.48 -0.46 -0.29 
upper Valley Creek -0.44 0.47 -0.21 -0.10 
*Bias as fraction of SE. 
 
 
Correlations.  The variance matrix for the process error indicates high correlations among 
the stocks (Table 3). This suggests that one should not use an estimation procedure that 
treats the process error of the stocks as independent. Careful consideration of the 
correlation structure is needed, and the Kalman filter can explicitly model this structure. 



 
Table 3. Process error correlations among stock (Kalman filter 
estimates). The stock-specific stochastic growth rate model was used. 
Bear Valley and Elk Creek 1.00   
Marsh Creek 0.99 1.00   
Sulphur Creek 0.90 0.94 1.00   
Big Creek 0.98 0.95 0.80 1.00   
Lemhi River 0.75 0.78 0.84 0.66 1.00  
upper Valley Creek 0.98 0.97 0.89 0.95 0.86 1.00 
 

Nonstationarity 
Because ocean/climate regime shifts and harvest rates can have large effects on stochastic 
growth rate, it is important to have a modeling framework that can accommodate 
nonstationarity. One way to deal with this is to explicitly model the nonstationarity using 
a state space model. One approach would be to rewrite that state equation as 
 
 

tttt ηµαα ++= −1 (state equation) 
 
Where tµ is a step function described by two parameters (for each population) that can be 
estimated from the spawner abundance series. If the shift is thought to have a common 
effect on all of the stocks, that jump in the step function can be estimated as a parameter 
common to all stocks.  As another possibility, if there are enough stocks in the analysis, it 
may be possible to model the nonstationarity by allowing tµ  to be determined by a series 
of parameters estimated for every year in the series. In this case, 
 

ett θµµ += 0  
 
where 0µ is a vector representing the mean stochastic growth rate for the populations, 

tθ is a scalar series such that ∑
=

=
T

t
t

1
0θ , and e is a vector of 1s. The various models can be 

compared based on their AIC scores or some other model selection criteria. 
 
Validation work done by Holmes shows a rather large shift in stochastic growth 
corresponding to the 1977 regime shift, but indicates that the shift does not reject the null 
hypothesis of no shift at the 5% significance level. But it must be remembered that 
changes in harvest scenarios corresponding to changes in population levels can mask the 
effects of regime shifts. For example, total fishing for ocean and in-river Snake River fall 
chinook fisheries was reduced by 30 percent or more from pre-listing rates (See 
http://www.nwr.noaa.gov/1salmon/salmesa/pubs/harvest2.html).  This harvest shift took 
place during the period used for calculating lambdas in the 2000 BiOp (1980-1999). 
Furthermore, there was no attempt to quantify the power of the test aimed at detecting a 
regime shift. Regime shifts may be important, but not detectable using the Holmes 
estimators in the cross-validation test. The Kalman filter approach gives a natural way to 



test for a significant shift by directly estimating shifts in the state dynamics. Power to 
detect important shifts can also be easily quantified, and can be made greater by 
appropriately combining information from salmon populations in a single model.  
 
Ocean/climate regime shifts 
 
It is becoming increasing apparent that ocean/climate regime shifts play a role in salmon 
productivity and have a potential to create shifts in stochastic population growth rates that 
are distinct from a stationary mean noise process. Below, we summarize work on salmon 
and ocean/climate regime shifts over the last several years. 

The National Research Council’s Committee on Protection and Management of Pacific 
Northwest Anadromous Salmonids identified that what happens at sea is important to the 
conservation and management of Pacific salmon. Interdecadal changes in the ocean 
environment, especially in water temperature, currents and biological communities, 
influence the growth and survivals rates, and in turn the returns of adults (National 
Research Council 1996).    

The poor ocean conditions for Columbia River salmon over the last 20 years are in part 
due to the dramatic decrease in food available for young juvenile entering the ocean. 
Drops in zooplankton and primary productivity, which feed the salmon food chain, 
showed a dramatic decrease off the West Coast around 1977, creating a relatively barren 
ocean environment for West Coast juvenile salmon (Hare et al. 1999).  

Ocean/climate regime shifts are signaled by large changes in an index called the Pacific 
Decadal Oscillation (PDO). In Figure 1, the PDO is illustrated.  This is an index that 
characterizes the month-to-month current patterns, and temperature and sea level pressure 
distributions in the North Pacific.  Researchers have found that positive values of the 
PDO correspond to a warmer North Pacific and negative values correspond to a cooler 
ocean (Hare et al. 1999, Mantua et al. 1997).    

Most significant is the cyclic nature of the PDO occurring approximately every 20-30 
years during the last 100 years. The PDO and other indicators indicate that the North 
Pacific Ocean suddenly shifted between the warm and cool regimes four times in the past 
century.  Historically these occurred in 1925, 1947 and 1977. The recent PDO 
information (http://tao.atmos.washington.edu/pdo/) suggests a shift may have occurred in 
1998 with the ocean changing from the warm regime that began in 1977 to a cool regime.  
Recently, Peterson and Schwing (2003) used synchronized shifts in the PDO, 
zooplankton volumes, coho salmon survival, and biomass anomalies of cold-water 
copepod species as evidence of a 1998 shift.  

The regime after the shift in 1947 favored Columbia River salmon populations, but the 
shifts after 1925 and 1977 were found to be unfavorable to Columbia River salmon.  
Besides characterizing the ocean environment, the PDO is also related to streamflow, 
which affects the ecosystem of salmon in rivers. Streamflow records from British 
Columbia and Washington State indicate relatively dry conditions during the 1977-1997 
period, Mantua et al. (1997) conclude that, “[t]o the extent that high streamflows favor 



high survival of juvenile salmon, PDO-related streamflow variations are likely working 
in concert with the changes to the near-shore marine environment in regard to impacts on 
salmon production.”  
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Figure 1. Winter values of the Pacific Decadal Oscillation, an index of sea surface 
temperature and temperature characterizes the state of the surface waters of North Pacific 
Ocean. The PDO index shows that the ocean cycles between a warm regime, identified 
by a positive PDO, and a cool regime, in which the PDO is negative.  

Figure 2.  Depicted is log (run size) with the mean subtracted, where run size is the 
estimated number of upriver spring chinook (those that spawn above Bonneville Dam) 
arriving at the mouth of the Columbia. Data are available from Oregon Department of 
Fish and Wildlife, (http://www.dfw.state.or.us/odfwhtml/infocntrfish/interfish/crm.html). 
Positive value bars are black, negative are gray.  Dotted vertical lines are drawn to mark 
the PDO polarity reversal times in 1925, 1947, 1977, and 1998. 

Figure 2 illustrates how the abundance of upriver spring chinook has shifted with the 
PDO.  Abundance is expressed as the estimated run size of spring chinook destined to 
areas upstream of Bonneville Dam. This run includes stocks from the Snake River 
spring/summer, the Upper Columbia River spring-run chinook ESUs. The data were 
updated versions of data in Oregon Department of Fish and Wildlife and Washington 
Department of Fish and Wildlife report  (ODFW and WDFW 1999). Notice that run size 
was above average in the cool ocean regime, below average after the 1977 PDO shift, but 
returned to above average after the 1998 PDO shift.  

The background level used in the 2000 FCRPS BiOp was used to project salmon 
populations over a century was derived from a period of poor ocean conditions for 
Columbia River salmon stocks (years 1980 through 1997) (Hare et al. 1999). For most of 
the past 20 years, ocean/climate conditions have been unfavorable to Columbia River 
salmon production. Assuming the base period’s low background survival rate continues 
into, and some have hypothesized that ocean conditions may be shifting to a more 
favorable regime.  



The scientific literature contains ample information from peer-reviewed scientific papers 
that the poor ocean conditions of the 1980s and 1990s are not permanent, and that the 
climate and ocean experience regime shifts which have large impacts on salmon 
production (Mantua et al. 1997; Hare et al. 1999). Finney et al. (2000) used sediment 
records to show that salmon abundance in Bristol Bay and Kodiak Island regions of 
Alaska have showed market shifts over the past 300 years, and that some pronounced 
changes appear to be related to climatic changes.  
 
Specific Comments: 
 
Pg. 2:  The opening paragraph of the Introduction section sets up the apparent 
inadequacies of the paper.  The purpose of the paper is to review and discuss alternative 
methods, yet the “… report reviews research since 2000, which tests and validates 
diffusion approximation methods for estimating population trends and risks.”  The paper 
therefore does not fully address the task at hand. 
 
Pg. 4:  The discussion of 1) uncertainty and 2) probabilities of crossing thresholds, 
should consider the life of the decisions (see discussion above) to which the alternative 
methods are to instruct.   
 
Pg. 7: The paper makes a good, but insufficient effort at explaining the uncertainty that 
only one critical assumption can make to the Diffusion Approximation Method.  In the 
example, insufficient knowledge about the relative reproductive success of hatchery-
origin fish provides a range of 5% to 51% annual growth.  This is a 10-fold difference.  
And as others have pointed out, the relative reproductive success of hatchery-origin fish 
is likely to be variable between populations, species, spawner density, and through 
subsequent generations.  The paper should more explicitly demonstrate what such an 
assumption does to analytical results and the predictive capability of this method. 
 
Pg. 13:   The statement that long-term population growth rate “… is one of the most 
commonly used risk metrics within the field of conservation biology” does not appear to 
comport with our  review of methods actually used in ESA recovery plans or in the 
application of the Species at Risk Act in Canada.  More typically, the considerable risk 
that estimating a distinct rate associated with long term population growth will be 
encumbered by cyclical or stochastic events unless there is ample knowledge of its 
component parts, has lead many conservation biologists to use other techniques. 
 
Pg. 17:   The discussion here of confidence intervals supports the concern that uncertainty 
is not evaluated consistently across alternative methods in this paper.  Decision makers 
need to understand the absolute uncertainty associated with results of each method and 
the relative precision of each method compared to alternative methods.  Decision makers 
can then decide what money, time, and staff effort they want to expend to reduce 
uncertainty in selection and support of a given analytical method.  Decision makers need 
to also be able to evaluate the scientific validity, including uncertainty, of alternative 
methods relative to other selection criteria. 
 



Pg. 18:   The paper states that the uncertainty associated with calculations using the 
Diffusion Approximation Method is “… definitely high.”  The paper needs to more 
clearly show the uncertainty of long-term predictions from this and all alternative 
methods.  This is an important element for evaluating alternative assessment methods and 
must be considered within the context of a full suite of evaluation criteria.  
 
Pg. 17-23:  A number of potential analytical results are provided that, if accurate, would 
provide considerable value to decision making.  However, the uncertainty surrounding 
these predictions is not provided.  Again, the sum total of the uncertainties associated 
with key method assumptions (e.g. reproductive success of hatchery fish and data 
stationarity), short data time series, and data error do not appear to be reflected in the 
various possible model results presented here.  One cannot discern if these output options 
are just more ‘complex, detailed imprecision’. 
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